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S E N S O R S

A biomimetic elastomeric robot skin using electrical 
impedance and acoustic tomography for tactile sensing
K. Park1, H. Yuk2, M. Yang1, J. Cho1, H. Lee3, J. Kim1*

Human skin perceives physical stimuli applied to the body and mitigates the risk of physical interaction through 
its soft and resilient mechanical properties. Social robots would benefit from whole-body robotic skin (or tactile 
sensors) resembling human skin in realizing a safe, intuitive, and contact-rich human-robot interaction. However, 
existing soft tactile sensors show several drawbacks (complex structure, poor scalability, and fragility), which 
limit their application in whole-body robotic skin. Here, we introduce biomimetic robotic skin based on hydrogel- 
elastomer hybrids and tomographic imaging. The developed skin consists of a tough hydrogel and a silicone 
elastomer forming a skin-inspired multilayer structure, achieving sufficient softness and resilience for protection. 
The sensor structure can also be easily repaired with adhesives even after severe damage (incision). For multimodal 
tactile sensation, electrodes and microphones are deployed in the sensor structure to measure local resistance 
changes and vibration due to touch. The ionic hydrogel layer is deformed owing to an external force, and the 
resulting local conductivity changes are measured via electrodes. The microphones also detect the vibration 
generated from touch to determine the location and type of dynamic tactile stimuli. The measurement data are 
then converted into multimodal tactile information through tomographic imaging and deep neural networks. We 
further implement a sensorized cosmetic prosthesis, demonstrating that our design could be used to implement 
deformable or complex-shaped robotic skin.

INTRODUCTION
Human skin has inspired the creation of robotic skin because it has 
various beneficial features for physical human-robot interaction 
(pHRI) environments. Human skin is the largest sensory organ, 
with an area of about 2 m2, protecting our entire body from external 
influences (1). The skin has four types of mechanoreceptors to feel 
various tactile stimuli (2, 3). Also, human skin efficiently achieves 
large-area tactile sensing capability using cognitive processing and 
a few mechanoreceptors that have a large receptive field (4, 5). If 
there is a robotic skin replicating these unique features, it would 
allow the robot to interact with the environment like humans. 
Integrating these features in a single robotic skin system is challeng-
ing, but it will be substantially beneficial for future robotics in pHRI 
environments.

Many robotic skin systems have been introduced since tactile 
sensing has become an important issue for humanoids (6, 7), 
prostheses (8, 9), and social robots (10, 11). Most systems primarily 
focus on protection and large-area sensing functionalities. The 
most common approach has been the use of two perpendicular and 
stretchable electrode lines (row and column electrodes) to form an 
array of sensing elements where each intersection of row and 
column electrodes forms a single tactile sensor (12–14). This ap-
proach can achieve a large sensing area with a small number of elec-
trodes, but practical limitations—such as fabrication complexity for 
a large and three-dimensional (3D) geometry, fragility, complex 
wiring, and repair difficulties—still need to be addressed. Another 
widely adopted approach has been the use of microcontrollers and 
digital communication to modularize the sensing elements (15, 16). 

These module-based robotic skins can achieve high scalability and 
robustness by connecting each module via a serial bus and monitoring 
their functionality, but fragile wiring exposed to the outside and 
relatively large power consumption (about 30 mW/cm2) are con-
sidered to be their major drawbacks (16).

Alternatively, Lee et al. reported a neuromimetic architecture 
that enables simultaneous transmission of thermotactile informa-
tion through a single conductive material. This method also allows 
the robotic skin to achieve a scalable and damage-resilient structure 
(17). There are other approaches implementing large-area sensing 
functionality using stereo cameras (18) or accelerometers (19), but 
fulfilling these aforementioned features of human skin (protection, 
multimodal sensing, and scalability) has not been achieved, especially 
in terms of practical requirements such as durability, cost efficiency, 
and repairability.

Here, we report a biomimetic robotic skin based on hydrogel- 
elastomer hybrids and tomographic imaging (Movie 1). The goal of 
our work was to provide a robot with human skin–like features 
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such as protection, multimodal tactile sensation, high scalability, 
and repairability. The developed robotic skin has a skin-inspired 
multilayer structure that consists of an ionic hydrogel and a silicone 
elastomer. The physical properties of the hydrogel are customizable 
and can be further improved through integration with silicone. The 
synergy between hydrogel and silicone allows the robotic skin to 
achieve not only skin-like softness but also high resilience for 
protection. The robotic skin can detect resistance changes and 
vibration using electrodes and microphones. These measurement 
data are subsequently used to reconstruct multimodal tactile sensa-
tion through tomographic imaging with the use of electrical imped-
ance tomography (EIT) (20, 21) and passive acoustic tomography 
(PAT) (19, 22). Deep neural networks (DNNs) are also used to 
improve the reconstruction performance or to classify the touch 
modality based on vibration signals. The robotic skin is also robust 
to external impact because there is no wire inside the multilayer 
structure. Furthermore, we demonstrated that the tactile sensing 
capability can be easily restored even after incisional damage (23). 
By combining the multilayer structure and tomographic imaging, 
we developed a robotic skin that resembles human skin in structure, 
function, and working principle. We further implemented a sen-
sorized cosmetic prosthesis to demonstrate the potential of the pro-
posed robotic skin.

RESULTS
Biomimetic multilayer structure with distributed 
sensing elements
Human skin is composed of three primary layers (epidermis, dermis, 
and hypodermis), which have different characteristics and func-
tions. The epidermis is the outermost layer of the skin that forms a 
waterproof barrier to prevent dehydration. The epidermis layer has 
a Young’s modulus of about 2 MPa, which is considerably high (24). 
The dermis is an elastic layer that lies beneath the epidermis. This 
layer consists of elastic tissue and fibers, giving skin resilience and 
toughness. The reticular dermis can be stretched up to 25% owing 
to the collagen fibers that ensure full recovery of tissue shape and 
structure after deformation (25). The dermis is physically inter-
locked with the epidermis, so they are not sliding over each other 
even under the shear force. It also creates a spatial filtering effect 
that spreads forces and pressure across a large area (26, 27). Last, the 
hypodermis (also called subcutaneous layer) is a thick and highly 
deformable layer found between the dermis and fascia. The hypo-
dermis mainly consists of soft loose connective tissues (areolar 
tissue and adipose tissue), and their mechanical properties allow the 
skin to efficiently absorb and attenuate external pressure. Although 
it is not a part of skin, its structure and function are closely related 
to those of the dermis. Four primary tactile mechanoreceptors are 
also located in different layers in human skin. Merkel’s disks and 
Meissner’s corpuscles are located toward the surface of the skin. 
Ruffini endings and Pacinian corpuscles are located deeper inside 
the skin (28); they are often found in deep fascia, which is located 
beneath the hypodermis (29, 30).

Inspired by the structure of human skin, we create a biomimetic 
robotic skin consisting of four parts: elastomeric skin, a hydrogel 
layer, a base layer, and distributed sensing elements (Fig. 1A). The 
outermost layer of the sensor is elastomeric skin, which is made of 
stretchable and tough silicone rubber. The hydrogel layer is a com-
pliant layer located underneath the elastomeric skin. The base layer 

is a flexible plate coated with silicone rubber, and it is placed below 
the other layers to support them. These three layers are strongly 
cross-linked to each other so that those layers are not delaminated 
during physical interaction (31). For multimodal tactile sensing, the 
electrodes and microphones are placed between the base layer and 
the hydrogel layer. We use this configuration to replicate some 
beneficial features of human mechanoreceptors.

The proposed structure offers several advantages for robotic 
skin. First, the robotic skin would have a protective function for safe 
human-robot collaboration, owing to the mechanical properties of 
the hydrogel-elastomer hybrids (Fig. 1B). The multilayer structure 
has a spatial filtering effect that offers a cushioning function of the 
skin. The compliance of the hydrogel provides a dampening effect 
from external force, whereas the elastomeric skin withstands the 
force and spreads it to a larger area (fig. S1). In addition, we can 
customize the geometries and/or mechanical properties of the 
multilayer structure to achieve an appropriate elastic modulus and 
thickness of the robotic skin; it would enable the robotic skin to 
fulfill safety criteria for various injuries, such as contusion (energy 
density, <2.52 J/cm2) and laceration (tensile stress, <1 MPa) (32). If 
the sensor is made only with the hydrogel, then deformation occurs 
locally in a small area so the sensor would not offer a sufficient 
protection. Because this protective function is realized by the 
mechanical properties of the multilayer structure, it is not impaired 
by the sensing characteristics (sensitivity and bandwidth). In addi-
tion, the elastomeric skin prevents direct contact between the 
hydrogel and air, offering an antidehydration effect. Specifically, the 
elastomeric skin effectively mitigated moisture loss of the hydrogel 
(fig. S2) over 60 days without noticeable changes in sensing perform-
ance or the need of retraining in machine learning algorithm. The 
long-term stability of the system can potentially be improved by the 
use of elastomers with much lower water permeability, such as butyl 
rubber (33) and/or nonvolatile ionic hydrogels (34).

The hydrogel layer can also be used as a medium for tactile sensing 
(Fig. 1C). Hydrogels contain a large amount of water and have elec-
trical conductivity because of the presence of electrolytes (fig. S3) 
(35). We also demonstrated that hydrogels transmit the vibration 
generated by touching the surface to the entire multilayer structure. 
These properties allow us to deploy electrodes and microphones on 
the base layer and use them to measure the force and vibration 
applied to the sensor’s surface. The developed robotic skin is able to 
detect not only weak vibrations but also forces up to 20 N (figs. S4 
and S15), which is sufficient to sense typical human touch interaction 
such as a stroke or push (36).

The distributed sensing elements allow the robotic skin to achieve 
high scalability (Fig. 1D). Each sensing element has a large receptive 
field so that the robotic skin can achieve a large sensing area with a 
small number of sensing elements. In addition, the sensing ele-
ments can be freely arranged within a large, curved, and even 
deformable surface. Because there is no direct connection between 
the sensing elements, we can incorporate an additional sensing 
element without concern about the existing sensing elements. This 
feature allows us to easily adjust the size of the robotic skin.

In addition, the robotic skin has the ability to repair after 
damage without loss of its functionality (Fig. 1E). If excessive force 
is applied to the robotic skin, the multilayer structure may become 
locally lacerated or crushed, causing the robot skin to lose its sense 
of touch. The proposed design does not expose any wires, whereas 
other approaches expose wires or circuits externally. We have 
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demonstrated that the robotic skin is repairable by restoring the 
electrical and mechanical properties of the multilayer structure 
using an adhesive for hydrogel or silicone rubber (37, 38).

Deep pressure sensing based on EIT
To sense deep pressure, we used the hydrogel as a pressure-sensitive 
material. The hydrogel is electrically conductive, and it is deformed 
when a force is applied. The impedance between electrodes was 
altered depending on the cross-sectional area for current to flow, 
which was reduced due to indentation. The results showed that the 
electrical impedance increased proportionally to the indentation 
depth (fig. S4). There was no dead zone, and the limit of detection 
was about 0.7 N. Hydrogels also exhibit low piezoresistive hysteresis 
(less than 3%) because the piezoresistive mechanism is based on 

changes in geometry (cross-sectional area for current flow) rather 
than changes in the percolation network (39).

Because the pressure was locally applied to the robotic skin, the 
conductivity distribution of the hydrogel was found to be locally 
altered accordingly. The location and intensity of the deformation 
can be observed using EIT, a nondestructive imaging technique that 
has been widely used for medical imaging (40, 41), geophysical 
exploration (42), and human-machine interfaces (43, 44). Figure 2 
demonstrates how the proposed robotic skin senses deep pressure 
using EIT. The metal electrodes were evenly placed between the 
hydrogel and the base layer, so the local deformation of the thick 
hydrogel layer can be indirectly measured using the electrodes 
(Fig. 2A). An alternating current of 40 kHz was injected through a 
pair of electrodes, and the resulting voltage was measured across 

Fig. 1. Concept of biomimetic multilayer structure for robotic skin. (A) Comparison between the biomimetic multilayer structure based on hydrogel-elastomer 
hybrids and human skin. Both structures consist of an elastic and tough outermost layer (elastomeric skin and dermal layer) and a thick and compliant cushioning layer 
(hydrogel and hypodermis). Sensing elements were also evenly distributed deep in the multilayer structure. (B) The multilayer structure allows the robotic skin to achieve 
an appropriate material property and dimensions for the protection function. (C) Because the hydrogel layer is compliant and electrically conductive, it can be used as a 
pressure-sensitive material. In addition, dynamic tactile stimuli (light touch) can be measured by detecting vibrations generated on the surface and transmitted through 
the multilayer structure. (D) Scalable design based on distributed sensing elements with a large and overlapping receptive field. (E) The biomimetic robotic skin can be 
repaired with an adhesive after damage to restore its structure and function.
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that pair. We used an alternating current to minimize the double-layer 
capacitance at the interface between the electrodes and electrolyte 
(45). The measurements were then repeated on other pairs of elec-
trodes along the predefined measurement pattern (Fig. 2B). Last, 
the measurement data were converted into a deformation map 
using an EIT reconstruction algorithm.

There are various inverse solving algorithms for implementing 
EIT (46, 47), but most of them have a trade-off between accuracy 
and speed (text S1). Thus, we used an EIT reconstruction algorithm 
based on a DNN, which has shown promising results in terms of 
accuracy, noise robustness, and reconstruction speed (Fig. 2C and 
fig. S6) (48, 49). In this method, a measurement vector was mapped 

into the latent variable through multilayer perceptron (MLP), and a 
deformation map was generated from the latent variable through a 
convolutional neural network (CNN). The network was trained using 
simulation data because it is impractical to obtain measurement 
data by experiments.

To demonstrate the EIT reconstruction performance, we pressed 
the biomimetic robotic skin with a hand or objects of various shapes 
and obtained the reconstruction results through the DNN-based 
EIT algorithm (Fig. 2D and movie S1). The result shows that the 
trained network can reconstruct deformation maps of various shapes. 
This result is notable considering that the spacing of the electrodes 
is about 40 mm (0.08 U/cm2). This design could be implemented 

Fig. 2. Deep pressure sensing using EIT. (A) Sensing procedure for deep pressure using EIT. The measurements were conducted across the electrodes, and these data 
were used to reconstruct the deformation map due to deep pressure. (B) Optimal measurement pattern for the developed robotic skin. The green circles and black lines 
indicate the electrodes and measurement pair, respectively. The electrode arrangement was heuristically determined so that 32 electrodes were spaced as evenly as 
possible in a square area. (C) Deformation map was reconstructed from measurement data through DNN-based EIT algorithm. (D) Image reconstruction results for various 
shapes of deep pressure (multipoint contact, circle-shaped contact, bar-shaped contact, and wrench-shaped contact).
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because of the large and overlapping receptive fields of the EIT 
measurement pattern. A single-point indentation experiment was 
also conducted to evaluate the contact localization accuracy, and 
the single-point contacts could be localized with a root mean square 
(RMS) error of 4.2 mm (figs. S8 and S9). This demonstrates that 
the EIT allows the robotic skin to achieve tactile superresolution 
through the interpolation between overlapping receptive fields.

Dynamic tactile sensing method based on PAT
Human skin also perceives dynamic tactile stimuli through vibration- 
sensitive mechanoreceptors (Pacinian corpuscles). The vibrations 
are usually generated on skin surfaces by dynamic tactile stimuli, 
and they are transmitted and recognized by the Pacinian corpuscles. 
Our biomimetic robotic skin senses the dynamic stimuli in a simi-
lar way. If dynamic stimuli are applied to the elastomeric skin, 

microvibrations are generated and transmitted deep into the sensor 
through the multilayer structure. The vibrations can be detected 
by the microphones that are evenly distributed over the base layer 
(Fig. 3A). Each microphone was also encased in a silicone capsule 
so that it could sense vibrations generated from a distance of about 
5.5 cm (fig. S15). Owing to the large receptive field, the robotic skin 
could detect stimuli over a large area with a low receptor density 
(0.0625 U/cm2).

Because the energy of vibrations is gradually attenuated as they 
are propagated, the vibration intensity of each microphone is deter-
mined by its distance from the vibration source. Thus, we calculated 
the position of the dynamic stimulus by applying PAT to the differ-
ence in signal strength obtained from each microphone (Fig. 3B and 
text S2). Each microphone continuously measures the vibration 
due to touch, and the signal intensity is defined as the power of the 

Fig. 3. Dynamic tactile sensing using PAT. (A) Measurement of dynamic tactile stimuli using an array of microphones. The microphones were placed as evenly as possible 
in the remaining space where the electrodes were placed. (B) Localization of dynamic tactile stimuli using PAT and differences in received signal strength. (C) Localization 
of dynamic stimuli (pat, tickle, and strokes) and their trajectories.
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signal within a specific time window. Then, the location of the con-
tact (vibration source) is estimated by minimizing the cost function 
derived from the decaying model of the vibration.

To demonstrate the localization algorithm, we applied various 
dynamic tactile stimuli (pat, tickle, and stroke) to the robotic skin, 
and the PAT algorithm was used to localize the stimuli (Fig. 3C and 
movie S1). Each image frame was filtered using a weight decaying 
over time to visualize the trajectory of the stimuli. The results 
showed that the robotic skin could successfully sense and localize 
dynamic tactile stimuli using microphones and PAT. To evaluate 
the localization accuracy, we carried out another experiment where-
by we applied a light touch repeatedly to a single point and localized 
its position using the PAT algorithm. The results showed that the 
stimulus could be localized with an RMS error of 6.6 mm (fig. S8).

Touch modality classification using CNN
Humans perceive tactile stimuli through the skin and often inter-
preted these stimuli as social cues or haptic signals with intent. Such 
a touch modality can be determined according to the intensity, 
location, and pattern of stimulus. For instance, a tickle consists of 
repeated light touches, and a stroke produces a continuous and 
moving vibration pattern. Each stimulus also has its own unique 
tone. These touch modalities provide additional meaning to sim-
ple tactile data such as force or vibration, facilitating tactile 
communication.

The robotic skin is also able to classify dynamic tactile stimuli 
(tap and tickle) based on the features of vibration signals because 
the type of touch determines the spatiotemporal pattern of the 
vibrations (Fig. 4). First, a history of the vibration intensity from 
each microphone was obtained. Second, a spectrogram was obtained 
from the most notable channel to observe the frequency spectrum 
over time. These 2D arrays were combined to form a feature image 
that represents the spatiotemporal pattern of the vibrations. Then, 
the dynamic tactile stimuli could be classified by applying a CNN to 
the feature image (fig. S7).

To evaluate the classification accuracy, we conducted an experi-
ment to classify touch modality using real measurement data. A 
dataset from 10 individuals was collected, where each person was 
asked to continuously apply four dynamic tactile stimuli (pat, tickle, 
stroke, and wind blow using an air brush). Five hundred feature 
images for each stimulus were collected from each participant, 
resulting in 5000 feature images for each stimulus. An equal number 
of feature images of baseline noise, where no contact is made on 
the skin, were added to the dataset. The collected dataset was also 
augmented by a factor of 5 by adding Gaussian noise. Last, the 
collected dataset was randomly divided into training, validation, 
and test sets at a ratio of 8:1:1 to avoid overfitting. The trained net-
work classified the test set with an accuracy of 98.7%.

For demonstration, the trained neural network was used to 
classify the touch modality in real time (movie S2). Dynamic stimuli 

Fig. 4. Classification of dynamic tactile stimuli based on spatiotemporal features of vibration. (A) A feature image was defined by concatenating the intensity history 
and spectrogram, which were obtained from the microphones. Subsequently, the spatiotemporal pattern of vibrations was extracted from the feature map using a CNN 
to classify the stimuli. (B) Examples of the feature images (pat, tickle, stroke, and wind blow). (C) Confusion matrix of the classification results.
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were applied to the developed robotic skin to obtain a feature 
image. Then, the pretrained neural network classified the touch 
modality based on the feature image in real time. The length of the 
time window was 0.5 s, and classification was performed every 0.1 s. 
The result shows that the trained network successfully classified the 
touch modality; thus, the developed robotic skin is capable of haptic 
communication with humans by understanding the intention of 
the touch.

Repair and restoration of the robotic skin
The developed robotic skin is robust to local damage and repairable. 
The electrodes and microphones are not directly exposed to exter-
nal force, so the robotic skin is not totally disabled although the 
elastomeric skin or hydrogel is damaged (Fig. 5B). The sensor struc-
ture can also be easily repaired using adhesives for hydrogels and 
elastomers. We have demonstrated this repairability. The developed 
robotic skin was cut with a scalpel, resulting in a loss of electrical 
connectivity and the inability to detect signals on the skin surface 
(Fig. 5A). Although the robotic skin was locally disabled due to 
damage, the tactile sensing capability did not deteriorate at the 
periphery of the site of damage (Fig. 5B). This result shows that the 
proposed design is robust to local damage. To repair the robotic 
skin, we bonded the hydrogel layer using a chitosan topohesive 
(37, 50). An aqueous solution of chitosan was used to bond hydrogel, 
and it was placed within the defect for a duration of 30 min (Fig. 5C). 
The chitosan chains cross-link into a polymer network in topological 
entanglement with the networks of the cut surfaces. When the cut 
surfaces adhere sufficiently, the silicone skin is fixed using commer-
cial sealant (Fig. 5D). After repair, the joined part showed a stable 

electrical connection again even under deep pressures (Fig. 5E). The 
repaired robotic skin could localize the force applied to the repaired area, 
and no artifacts were observed in the reconstructed images (movie 
S3). Furthermore, the electrical and mechanical connection of the 
repaired region was stable even under the external force of 20 N (fig. 
S13). This demonstrates that the structure and function of biomimetic 
robotic skin can be recovered in an easy and simple procedure.

Application on a sensorized prosthesis
Because we can freely customize the shape of the hydrogel-elastomer 
hybrid and the arrangement of the sensing elements, the developed 
biomimetic robotic skin can be easily realized on a large and curved 
surface. To demonstrate this advantage, we made biomimetic ro-
botic skin for a prosthesis as a proof of concept. The prosthesis was 
capable of sensing deep pressure through EIT (movie S4). The 
sensorized prosthesis (cosmetic prosthesis) consisted of an elasto-
meric skin, ionic hydrogel, and a rigid core with metal electrodes 
(Fig. 6). Because there is some space inside the rigid core, we expect 
that the proposed design can be easily integrated into the motorized 
system. There are currently several challenges in restoring sensory 
feedback to individuals with impaired sensation due to disease, 
trauma, or amputation. The proposed robotic skin offers a platform 
that could be integrated with devices such as prostheses to provide 
a means for end users to physically interact with their surroundings.

DISCUSSION
We introduce a biomimetic robotic skin emulating the characteris-
tics of human skin. The design of the multilayered structure with 

Fig. 5. Repairability of the robotic skin. (A) The robotic skin was cut with a surgical scalpel. The incision resulted in a local loss of electrical connection, which can be 
observed through the EIT. (B) The robotic skin was locally disabled from tactile sensing due to the damage, but the peripheral regions surrounding the defect remained 
functional. (C) Chitosan topohesive was applied to the damaged region to bond the hydrogel. Cross-linking of the polymer network was achieved in a pH-responsive 
technique, thereby bonding the cut surfaces. (D) Elastomeric skin was fixed with a silicone adhesive (room temperature–vulcanizing rubber). (E) The structure and tactile 
sensing functionality of the robotic skin were restored, including the region with the defect after repair.
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distributed sensing elements enables large-area tactile sensing over 
continuous and curved surfaces, as shown in Fig. 6. Although other 
methods can achieve this level of tactile sensing performance, the 
tomographic imaging approach successfully achieves complex curved 
robotic skin with a relatively simple and practical manufactur-
ing process.

The hydrogel-elastomer hybrid is able to prevent soft tissue inju-
ries from occurring to humans owing to its mechanical properties 
(32). This robotic skin would provide robots with a tactile sensation, 
allowing the robot to move to ensure safety. Although the resultant 
multilayered structure might be relatively heavier than other mate-
rials such as foams, the robotic skin can offer close replication of the 
feeling of human skin (51). This feature is expected to be critical for 
building empathy and attachment in social robots.

The proposed robotic skin could sense deep pressure and dynamic 
tactile stimuli through EIT and PAT. These tomographic imaging 
methods are simultaneously implemented in a biomimetic multi-
layer structure and complement each other synergistically. This 
approach also allows the robotic skin to be realized with a low 
receptor density. The sensing performance shown in Figs. 2 and 3 
demonstrates that the developed robotic skin can detect moderate 
levels of multipoint contacts from light vibratory touch to strong 
deep pressure. However, the current system cannot distinguish 
various deformations such as normal indentation and stretch because 
these deformations had not been considered during the training of 
the DNN. Nonetheless, such additional deformation regimes can be 
included by introducing a material with anisotropic resistivity (52) 
or augmenting the training dataset with simulation results regard-
ing various deformations. It would also be possible to augment the 
sensing modality by adding artificial intelligence–based sensing 
methods with different transducing principles such as optical (53) 
and magnetic (54).

The touch modality could also be classified with an accuracy of 
98.7% as shown in Fig. 4, which shows the potential of the devel-
oped robotic skin in haptic communication between humans and 
robots. We also envisage that the number of classifiable modalities 
can increase if we improve the feature images to include EIT data.

We also demonstrated that the biomimetic robotic skin can 
be restored after severe damage. This repairability is a practical and 
necessary feature of robotic skin for pHRI; however, the repair 
process still has to be conducted manually. In the future, the use of 
self-healing materials could be explored to more closely mimic 
human skin (55, 56).

In summary, we have developed a robotic skin by taking inspira-
tion from the native human skin in terms of its architecture and 
functionality. The proposed design approach can also be further 
developed by integrating with other transducing methods such as 
capacitive, magnetic, or optical methods. This study presents an 
alternative yet practical approach for creating large-area robotic 
skin, and we envisage that our study would help robots to interact 
with their environment.

MATERIALS AND METHODS
Fabrication of the biomimetic robotic skin
The sensing domain of the robot skin measures 20 cm by 20 cm. 
The base layer was prepared by cutting an acrylic plate using a laser 
cutter (Speedy 300, Trotec), and its surface was coated with a 
silicone elastomer (Dragon Skin 20, Smooth-On). The electrodes 
were low-head stainless bolts (CBSTSR4-8, Misumi), which were 
used for EIT. The surface of the electrodes was functionalized using 
3-(trimethoxysilyl) propyl methacrylate to form a stable connection 
between the hydrogels (57). The condenser microphones (CMEJ-
4622-25-L082, CUI Inc.) were used to capture the vibration. Thirty- 
two electrodes and 25 microphones were evenly distributed on the 
base. The electrodes were firmly fixed on the base layer. The micro-
phones were encapsulated with a silicone elastomer (Dragon Skin 
20, Smooth-On) and bonded to the silicone surface of the base layer. 
The silicone surface and the elastomeric capsules were treated with 
a 10 weight % (wt %) benzophenone (BP)–ethanol solution, so they 
could be strongly bonded to the hydrogels through an ultraviolet 
(UV)–initiated polymerization process.

The biomimetic multilayer structure was made of a silicone elasto-
mer and tough hydrogel (fig. S5). The thicknesses of the elastomeric 

Fig. 6. Application of the biomimetic robotic skin to a cosmetic prosthesis. (A) Structure of the sensorized prosthesis. The rigid core includes metal electrodes to 
perform EIT-based tactile sensing. A hydrogel layer was formed between the rigid core and prosthesis skin, and it was used as a pressure-sensing material. (B) An image 
of the prosthesis incorporating the robotic skin. (C) Demonstration of EIT-based tactile sensing on the prosthetic arm.
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skin and the hydrogel were 500 m and 1 cm, respectively. The 
elastomeric skin was a large film made with a silicone elastomer 
(Dragon Skin 20, Smooth-On), and it was treated with a BP-ethanol 
solution. Other silicone-based parts were also treated with BP solu-
tion for the same reason. The hydrogel layer was prepared by mixing 
a degassed aqueous precursor solution of a polyacrylamide-alginate 
(PAAm-Alg) tough hydrogel [13.2 wt % acrylamide, 0.8 wt % sodium 
alginate, 0.02  wt % MBAA (N’,N’-methylenebisacrylamide), and 
0.2 wt % Irgacure 2959] and calcium sulfate slurry (0.1328 times 
the weight of sodium alginate). The mixture was mixed quickly 
and poured onto a BP-treated sensor base. Then, the mixture was 
covered with BP-treated elastomeric skin to prevent contact with 
oxygen. We waited 1 hour for the alginate to cure primarily, and then 
cured the polyacrylamide in the UV cross-linker (CL-3000L, Analytik 
Jena) for 1 hour. Because all the elements of the robotic skin were 
chemically treated for bonding with the hydrogel, the developed 
sensor did not fail or delaminate under external forces.

The sensorized prosthesis is composed of an elastomeric skin 
(cosmetic prosthesis, Regal) and a rigid core, and the gap between 
the two parts is filled with tough hydrogel. The inner side of elastomeric 
skin was treated with a BP-ethanol solution and coated with a PAAm 
hydrogel (58). The tough hydrogel was prepared by mixing a precursor 
solution of PAAm-Alg hydrogel [13.2 wt % acrylamide, 0.8 wt % 
sodium alginate, 0.008 wt % MBAA, 0.0465 wt % APS (ammonium 
persulfate), and 0.033 wt % TEMED (tetramethylethylenediamine)] 
and a calcium sulfate slurry (0.1328 times the weight of sodium 
alginate). The mixture was mixed with a frother and injected using a 
syringe into the gap between the elastomeric skin and the rigid core. 
The cosmetic prosthesis was then placed in a water tank to prevent con-
tact with oxygen through the gas-permeable skin. We waited 1 hour for 
the precursor solution to cure. The hydrogel precursors infiltrated 
into the hydrogel-coated surface, forming an interpenetrating 
polymer network during the polymerization process (fig. S14). 
The materials used were as follows: alginate (Sigma-Aldrich, 
W201502), acrylamide (Bio-Rad, 1610140), MBAA (Sigma-Aldrich, 
M7279), TEMED (Sigma-Aldrich, T7024), calcium sulfate (Sigma- 
Aldrich, C3771), ammonium persulfate (Sigma-Aldrich, A3678), 
and 2-hydroxy-4′-(2-hydroxyethoxy)-2- methylpropiophenone 
(Irgacure 2959; Sigma-Aldrich, 410896).

Preparation of chitosan topohesive
The chitosan topohesive was prepared as described in the paper of 
Yang et al. (50). An acidic buffer solution was prepared by dissolving 
0.976 g of 4-morpholineethanesulfonic acid powder (MES hydrate; 
Sigma-Aldrich, M8250) into 50  ml of deionized water. Sodium 
hydroxide (Sigma-Aldrich, S5881) was also added to the buffer 
solution until its pH reached 4.5. Then, chitosan powder (Sigma- 
Aldrich, 448877) was added to the solution and thoroughly mixed 
until the chitosan powder was completely dissolved.

Setup and procedure of indentation experiment
To evaluate the localization performance of the developed robotic 
skin, we conducted experiments in which tactile stimuli such as 
pressure or vibration were applied to the sensor surface. The experi-
mental setup is presented in the Supplementary Materials (fig. S9). 
The plane-shaped robotic skin was placed on a three-axis motorized 
linear stage (EzRobo-5GX, Iwashita Engineering), and tactile stimuli 
were applied with an indenter or a vibrator unit depending on the 
experiment. The first experiment was to apply force to the robotic 

skin with an indenter to evaluate the EIT-based contact localization 
performance. The indenter unit consists of a load cell (651AL, 
KTOYO) and a hemispherical tip with a diameter of 15 mm. The 
robotic skin was indented at each node of a 15 × 15 square grid, and 
the indentation depth was about 7.5 mm (75% of the thickness). 
During the experiment, the force value, the sensor output, the posi-
tion of the indenter, and the indentation depth were all recorded. 
Then, deformation maps were reconstructed from the experimental 
data, and the localization performance was evaluated by comparing 
the peak positions with the actually indented positions (fig. S8). The 
second experiment was to apply vibration to the robotic skin with a 
vibrator to evaluate the PAT-based vibration localization performance. 
The vibrator consists of a voice coil motor (LVCM-032-076-02, 
Moticont), a cross roller guide (VR3-100X14Z, THK), a spring, and 
a rubber tip. The vibration was applied to a 13 × 13 square grid on 
the sensor surface, and the frequency of the vibration was 10 Hz. 
The dynamic tactile stimuli were localized by applying the PAT 
algorithm to the intensities of the recorded vibration signals, and 
the results were compared with the actual contact location (fig. S8).

Setup and procedure for cyclic loading
We conducted a cyclic loading test to investigate the mechanical 
and piezoresistive properties of the hydrogel-elastomer hybrids. A 
simple specimen representing the transducing mechanism of the 
multilayer structure was repeatedly indented using a hemispherical 
tip with a diameter of 15 mm (fig. S4A). The specimen was prepared 
with the following dimensions: 40 mm in width, 55 mm in length, 
and 10 mm in thickness. The electrodes had a radius of 3 mm and 
were spaced 43 mm from each other. Specimens were compressed up 
to 8 mm (80% of thickness), and the loading frequency ranged from 
0.001 to 4 Hz. During the experiment, the indentation depth, resis-
tance, and force values were continuously recorded, and the signals 
are processed with a first-order IIR LPF with a 3-kHz cutoff frequency. 
The result shows that the impedance between two electrodes increases 
in proportion to the applied force (fig. S4B). The hysteresis of the 
specimen was quantified by analyzing the loading/unloading curves, 
and the result shows that the hydrogel-elastomer hybrids exhibit low 
hysteresis (fig. S4, E and F). The limit of detection was also defined as the 
force value that changed the sensor output by three times the SD 
of the measurement noise, and the value was found to be about 0.7 N.

In addition, the cyclic loading test was carried out once more to 
characterize the change in the material properties of the multilayer 
structure due to damage and repair. After the first experiment, the 
specimen was cut with a knife and repaired with the chitosan-based 
topohesive and silicone adhesive (fig. S13). The repaired specimen 
was used for cyclic loading test again, and the result shows that the 
electrical connection and properties under the external force were 
restored after the repair, supporting both the structural and func-
tional reparability of the biomimetic structure after damage. The 
material characteristics were slightly changed after damage and 
repair, but the sensor performance was comparable to that of the 
intact specimen.

DNN for EIT
In this study, real-time EIT reconstruction was enabled by setting 
the model complexity to be moderately light. The training data were 
obtained by running finite element method simulations instead of 
directly applying pressure to the sensor (59) because various types 
of pressure can be applied in the simulation environment. We made 
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two mesh models: a nondeformed reference mesh model and a 
mesh model with deformation. These two mesh models calculated 
the degree of deformation (deformation map ) and the corre-
sponding measurement voltage (v) of the sensor. To accelerate the 
simulation, the measured voltage was obtained by assigning a con-
ductivity value of zero to the mesh elements corresponding to the 
indented region instead of regenerating a deformed mesh model 
every time. Because the simulation data differ from the actual mea-
surement data because of measurement noise and modeling errors, 
we tried to generalize the model by using a large amount of data and 
model normalization techniques.

For the machine learning pipeline, we performed latent learning 
(unsupervised) on the deformation map and EIT measurement 
vector, and then we obtained a projection between the two latent 
spaces (fig. S6). The length of the EIT measurement vector was 94, 
and it was encoded into 84 latent spaces through an autoencoder 
consisting of a fully connected network (FCN) with an exponential 
linear unit (ELU) function as an activation function. During 
autoencoder training, a dropout of 0.03 was added to prevent over-
fitting, and Gaussian noise was added to the input to make the 
trained model robust to measurement noise. Because the pattern 
itself used for measurements was already optimized (60), each 
measurement data had important information so that the number 
of neurons in the bottleneck layer could not be greatly reduced 
compared with the length of the measurement data.

The size of the deformation map was 48 × 48, and it was encoded 
into 128 latent spaces through a convolutional autoencoder (CAE). 
The CAE was also trained with Gaussian noise added to the input 
stage so that the trained model had a denoising property. The 
decoder part used an upsampling (nearest) + convolution operation 
instead of using a transposed convolution. The ELU function was 
used as an activation function in all layers.

Once the latent learning step was finished, the projection be-
tween the two latent spaces was obtained through supervised learn-
ing. The latent projections were FCNs with two hidden layers, with 
84 inputs and 128 outputs. The number of neurons in the hidden 
layer was 256 and 256, and the activation function was the ELU 
function. To prevent overfitting, the encoder and decoder parts were 
not trained during latent projection training. The trained model 
could reconstruct the strain map in real time because of its light 
network structure. In addition, the reconstruction result was robust 
to measurement noise and showed relatively few artifacts compared 
with the image obtained through the conventional method (text S1).

CNN for touch modality classification
Touch modality classification was also performed in real time, simi-
lar to DNN-based EIT. The training data were obtained through 
experiments in which people applied dynamic tactile stimuli directly 
to the robotic skin. There were 10 people in the experiment, and 
each person applied four distinct stimuli to obtain 500 feature 
images for each stimulus. Measurement noise and ambient noise 
data were also collected for the same number as other stimuli and 
were labeled “none” to represent the absence of touch. Then, the 
collected dataset was augmented by adding Gaussian noise. To pre-
vent overfitting, the dataset was randomly divided into a training 
set, a validation set, and a test set at a ratio of 8:1:1.

The size of each feature image was 89 × 41, corresponding to a 
time window with a duration of 0.5 s. To find the spatiotemporal 
pattern within a feature image, a CNN was used. The size of the first 

convolutional layer was 5 × 5 × 32, and the image was not padded. 
The output of the first convolutional layer was input to the batch 
normalization and rectified linear (ReLU) activation layer. Then, it 
was downsized through the max-pooling layer. These operations 
(i.e., conv2D, batch normalization, ReLU, and MaxPool) were 
repeated once more with a different setting (fig. S7). Last, the out-
put was flattened and progressed through the FCN layer with the 
softmax activation layer. The network was trained using an adaptive 
moment estimation (ADAM) optimizer with an initial learning rate 
of 0.0002, which drops by a factor of 0.1 every five epochs. The size 
of the mini batch was set to 64, and the cross-entropy loss was 
calculated every 50 iterations (training with mini batch). The training 
was set to be aborted if the loss did not decrease more than 20 times. 
The training was performed using a single GeForce RTX 3070 
graphics processing unit. The trained network exhibited a 98.7% 
classification accuracy on the test set.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abm7187
Texts S1 to S4
Figs. S1 to S15
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Text S1. Reconstruction of strain using electrical impedance tomography (EIT) 
 

Electrical impedance tomography (EIT) is a reconstruction method developed to capture the impedance distribution 

inside a conductive medium using electrodes on the surface (61). The EIT technique measures the voltages from the 

electrodes and converts the voltages to a conductivity distribution of the medium. The former process is a forward 

problem, and the latter is an inverse problem. The forward EIT problem aims to find the voltage 𝜙 on the boundary 

∂Ω when the conductivity distribution 𝜎 in a conductive domain Ω is given. The continuum version of Kirchhoff’s 

law describes the following relationships between the potential 𝜙 and the conductivity distribution σ in the region 

Ω and the boundary condition on 𝜕Ω. 

∇ ⋅ (𝜎∇𝜙) = 0      in   Ω 

𝑗 =  𝜎∇𝜙  ⋅  𝐧       in   ∂ Ω 

where j denotes the current density and n is the unit normal vector on 𝜕Ω. This is a Dirichlet-Neumann boundary 

value problem for the Laplacian elliptical partial difference equation, and can be solved with the finite element 

method. The inverse problem reconstructs the conductivity distribution (𝝈) from a set of voltage measurements (V). 

This process is generally ill-posed and nonlinear; thus, linearization is widely used for fast computation. 

Δ𝐕 ≈ 𝐉Δ𝝈 + 𝐰 

where 𝝈 is the conductivity distribution (defined in mesh elements), 𝐉 is the Jacobian matrix calculated from the 

initial conductivity with a given pattern, and w is measurement noise. The linearized inverse problem can be solved 

by minimizing the square of the L2-norm of the estimation error. As a result, we can estimate the conductivity change 

with the pseudoinverse of the Jacobian matrix as follows: 

Δ𝝈 = (𝐉T𝐉)−1𝐉TΔ𝐕 

However, calculating the pseudoinverse directly from the Jacobian 𝐉 is unstable if the rank of 𝐉 is smaller than the 

length of the vector 𝝈. Hence, regularization methods are used to stabilize the solution. 

argmin
Δ𝝈

{‖𝐉Δ𝝈 − Δ𝐕‖
2
2

+ ‖𝚪Δ𝝈‖2
2} 

where 𝚪 is the Laplacian-type regularization matrix that extracts the high-spatial-frequency components from the 

conductivity distribution. We can derive the mapping matrix between Δ𝝈 and Δ𝐕 by the above minimization 

problem. 

Δ𝝈 = (𝐉T𝐉 + α2𝚪T𝚪)−1𝐉TΔ𝐕 

where α is a scalar hyperparameter that adjusts the strength of the regularization. This method is one of the most 

straightforward ways to reconstruct the deformation map from measurement data, but the reconstruction results are 

often blurred or distorted. The iterative methods would exhibit better reconstruction results, but their uses in tactile 

sensors are limited due to the heavy computational load that limits the real-time reconstruction. Thus, iterative 

methods are not practical for use in robotic skin. To resolve this trade-off between the quality and speed of 

reconstruction, a deep neural network-based EIT reconstruction has been introduced to achieve image quality and 

speed simultaneously. The neural network could deal with the ill-posedness and nonlinearity of the EIT inverse 

problem effectively, demonstrating an accurate yet fast reconstruction. 



Text S2. Localization of touch using passive acoustic tomography (PAT) 

The developed robotic skin can detect dynamic tactile stimuli (e.g., pat, tickle, stroke) by using microphones that 

measure a vibration due to touch. These vibrations are propagated to other parts of the robotic skin, and their 

amplitude decays over the distance. This characteristic indicates that the microphones have a large and overlapping 

receptive field. Thus, the vibration source can be localized based on the energy of the signal obtained from each 

microphone and the characteristics of the receptive field (i.e., the energy decay model). This technique has been 

widely used for the positioning of people and objects (62), and it is often called passive acoustic tomography (PAT) 

depending on the application (22). 

The developed robotic skin is made of hydrogel-elastomer hybrids, and the vibration is propagated through this 

multilayer structure. Since each layer shows nonlinear and viscoelastic material properties, it is not easy to obtain an 

analytical model for energy decay. These characteristics also make simulation difficult, and it cannot be guaranteed 

that the simulation results and the actual sensor characteristics match well. In addition, each microphone has different 

characteristics (e.g., sensitivity, receptive field) and needs to be calibrated manually. Thus, we conducted an 

experiment to apply vibration to the surface of robotic skin and obtained the receptive field of each microphone using 

the experimental data. Here, we modeled each receptive field of the ith microphone as 

I𝑖 ≈ I0 (
𝑎𝑖

𝑟𝑖
2 + 𝑏𝑖

) 

where I0 is the intensity at the source,  ri is the distance between the ith microphone and the vibration source, 

and ai and bi are fitting parameters. If we assume that there is only a single vibration source, then I0 is equal for 

every microphone. Therefore, for any  i  and  j , 

I0 = I𝑖 (
(𝕩 − 𝕩𝑖)

2 + 𝑏𝑖

𝑎𝑖

) = I𝑗 (
(𝕩 − 𝕩𝑗)

2
+ 𝑏𝑗

𝑎𝑗

) 

where 𝕩 is the position of the source and  is the position of the ith microphone. However, measured data hardly 

meet this equation due to noise and modeling error. If there are N microphones, then N-1 independent equations of 

error can be derived as below. 

ε𝑖,𝑗(𝕩) = Î𝑖 (
(𝕩 − 𝕩𝑖)

2 + 𝑏𝑖

𝑎𝑖

) − Î𝑗 (
(𝕩 − 𝕩𝑗)

2
+ 𝑏𝑗

𝑎𝑗

) 

where Îi is the measured intensity of the signal from the ith microphone. Assuming the kth microphone has the 

largest intensity, we can define a loss function  L as a sum of error ε values, as shown below. 

𝐿 = ∑ ε𝑘,𝑖
2 (𝕩)

𝑖≠𝑘

= ∑ {Î𝑖 (
(𝕩 − 𝕩𝑖)

2 + 𝑏𝑖

𝑎𝑖

) − Î𝑗 (
(𝕩 − 𝕩𝑗)

2
+ 𝑏𝑗

𝑎𝑗

)}

2

𝑖≠𝑘

 

Then, the location of the vibration source is determined by finding the value of 𝕩 that minimizes the loss function L. 

𝕩 = argmin
𝕩 

𝐿 = argmin
𝕩 

∑ {Î𝑖 (
(𝕩 − 𝕩𝑖)

2 + 𝑏𝑖

𝑎𝑖

) − Î𝑗 (
(𝕩 − 𝕩𝑗)

2
+ 𝑏𝑗

𝑎𝑗

)}

2

𝑖≠𝑘

 

 



Text S3. Measurement device for EIT and PAT 

A field-programmable gate array (FPGA)-based data acquisition system (myRIO-1900, National Instrument, USA) 

was used to obtain both voltage measurements for the EIT and audio signals for the PAT (Fig. S10). To use EIT, it is 

necessary to select an electrode for current injection and voltage measurement, and several measurements are 

required to reconstruct a single EIT image. Therefore, voltage conversion and electrode switching must be conducted 

at fast and accurate timing to achieve a fast frame rate. Additionally, PAT requires receiving signals from multiple 

microphones simultaneously. To achieve these requirements, we utilized an FPGA-based measurement system (Fig. 

S10). The developed system had several analog/digital channels, and 10 analog inputs and 22 digital outputs were 

used for voltage measurement and multiplexing. The EIT utilized its 20 digital outputs to control each of the four 

32:1 multiplexers and to inject current and measure voltage to the sensor. A fixed voltage source was used for current 

injection, and a variable resistor was connected in series to the channel through which the current was injected. The 

measured value was corrected by calculating the actual current applied to the sensor by measuring the voltage across 

this resistor. The PAT utilized eight analog inputs to measure dynamic tactile signals from eight microphones. To 

increase the number of available microphones, eight multiplexers (4:1 multiplexing) were controlled with the same 

digital signal (2 channels) so that up to 32 microphones could be utilized. The circuits for the operation of EIT and 

PAT were manufactured separately and stacked on the data acquisition system (DAQ, myRIO-1900) for simultaneous 

operation. To suppress the reactance of the hydrogel, a square wave (-1 V to 1 V) with a frequency of 40 kHz was 

injected into the sensor instead of DC current, and the measurement was also performed according to the current 

direction. Since the measurement value is very noisy, the previous measurement data were loaded for each 

measurement and filtered with a first-order LPF with a cut-off frequency of 45 Hz. In the FPGA chip of the DAQ, the 

filtered value was buffered to the host at a rate of 60 Hz and transmitted through the first-in, first-out (FIFO) function. 

Simultaneously, with the EIT measurement, the microphone signal for the PAT was also measured in parallel. The 

sampling time of the 8 microphones was 25 microseconds, and 25 acoustic signals took approximately 100 

microseconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Text S4. Comparison between different electrode arrangements 

The intrinsic characteristics of the developed sensor is evaluated by analyzing the result of the forward problem 

(FEM simulation) First, we defined the sensitivity as the L2 norm of the changes in the output vector due to a unit 

deformation (a bell-shaped surface with a depth of 2.5 mm and a standard deviation of 7.5 mm). The shape of the unit 

deformation was determined as a bell-shaped surface considering the actual deformation of the sensor during the 

indentation with a hemispherical tip (Fig. S1).  

 Consider a forward model in which the numbers of electrodes and mesh elements are L and M, respectively. Then, 

the conductivity distribution is expressed as a vector 𝝈 ∈ ℝM×1, and the electrical behavior of the sensor model can 

be represented by using a transfer impedance matrix 𝐒(𝝈) ∈ ℝL×L: 

 

𝛗(∙ ; 𝝈, 𝐩) = 𝐒(𝝈) ∙ 𝐩 

 

where 𝐩 ∈ ℝL×1  is the current injected through the electrodes and 𝛗 ∈ ℝL×1  is the resulting potential on the 

electrodes. If the conductivity distribution changes, then the transfer impedance matrix 𝐒 becomes 

 

𝐒(𝝈 + ∆𝝈) = 𝐒(𝝈) + ∆𝐒 

 

Then, the change in the resulting potential is determined as follows: 

 

∆v = 𝐦𝐓 ∙ ∆𝐒 ∙ 𝐩 

 

where 𝐦 ∈ ℝL×1 is the measurement vector. Above equation can be rewritten by using a Kronecker product as 

 

∆v = (𝐩𝐓 ⊗ 𝐦𝐓) ∙ ∆𝐬 = 𝐠 ∙ ∆𝐬 

 

where ∆𝐬 is a vectorization of ∆𝐒. The vector 𝐠 ∈ ℝ1×L2
 is defined to combine the vectors 𝐦 and 𝐩. This 

equation can be extended by concatenating the row vectors g to form a matrix G, which represent the given EIT 

electrode pattern of length N. 

 

∆𝐯 = 𝐆 ∙ ∆𝐬, where 𝐆 = (

𝐠𝟏

⋮
𝐠N

) 

 

Finally, the sensitivity map 𝚯 ∈ ℝ48×48 can be defined as below. 

 

𝚯(𝑖, 𝑗) = ‖∆𝐯(𝑖,𝑗)‖
2

, where  ∆𝐯(𝑖,𝑗) = 𝐆 ∙ {𝐬(𝝈0 + ∆𝝈(𝑖,𝑗)) − 𝐬(𝝈0)} = 𝐆 ∙ ∆𝐬(𝑖,𝑗) 

 

 The sensor surface was discretized into 2304 regions (48×48 grid) and the unit deformation is defined for each 

region. The vector ∆𝝈(𝑖,𝑗) represents the change in conductivity distribution, and it is simulated by assigning zero 

conductivity value to the mesh elements corresponding to the indented portion of the sensor (Fig. S11A). Next, we 



obtained the changes in output voltage ∆𝐯(𝑖,𝑗) by solving the forward problem (FEM). Finally, we could obtain the 

sensitivity map by performing these simulations for all regions of the sensor (48-by-48 grid). We obtained sensitivity 

maps from two mesh models with different electrode arrangements (Fig. S11B-C). This result shows that our design 

has a sensitivity map with uniform and high values. In particular, the conventional design has a sensitivity below our 

design’s minimum sensitivity in 33% of its sensing area. It means that the conventional design has a ‘blind spot’ in 

the center region. In this case, we cannot obtain a significant level of change in output unless a high-contrast 

conductivity perturbation (or deep deformation) occurs over a large area.  

Second, we evaluate the spatial acuity of the robotic skin by introducing a concept of virtual taxel. In general, the 

spatial resolution of the pressure sensor is determined by the distance between the taxels that exist individually. 

However, the tactile acuity actually depends on a combination of factors, including the taxels’ density and spatial 

layout, and the size/shape of the receptive field, coupled with utilizing active and probabilistic methods for perception 

(63). It means that we have to investigate how the taxels (or sensor signals) respond to tactile stimuli. 

Inspired by this perspective, we quantified the spatial acuity based on the similarity of the output change due to local 

deformation for each location of the sensor surface. The sensor surface was divided into 2304 regions, and local 

deformation was simulated in each location to obtain the change in sensor outputs (∆𝐯) as below. 

 

∆𝐯(𝑖,𝑗) = 𝐆 ∙ ∆𝐬(𝑖,𝑗) 

 

Here, we grouped regions that produce similar output pattern by applying k-means clustering algorithm to the vectors 

∆𝐯(𝑖,𝑗). Then, we calculated the cosine similarity between the centroid of each cluster (∆𝝁𝑘) and all vectors 

(∆𝐯(𝑖,𝑗)). 

 

𝑆(∆𝝁𝑘, ∆𝐯(𝑖,𝑗)) =
∆𝝁𝑘 ∙ ∆𝐯(𝑖,𝑗)

‖∆𝝁𝑘‖‖∆𝐯(𝑖,𝑗)‖
 

 

Next, we defined a similarity surface for each cluster as below. 

 

𝑆𝑘(𝑖, 𝑗) = 𝑆(∆𝝁𝑘 , ∆𝐯(𝑖,𝑗)) 

 

Then, these surfaces are a visual representation of how similar each position generates an output vector to each other. 

If the similarity surface is spread out, each position produces an output vector that is similar to the others. 

Conversely, if the similarity surface is concentrated at each location, it means that each location produces an output 

vector that is distinguishable from the others. We obtained similarity surfaces from both models through k-means 

clustering with a hyperparameter of 90. Examples of the similarity surfaces shows that our design has less spread 

similarity surface, implying that the grid-like electrode arrangement has much better spatial acuity than the 

conventional design (Fig. S11D). 

For quantification, we defined virtual taxels by quantizing the similarity surfaces with a threshold of 0.7 (Fig. S11E-

F). The results present that our design has much sharp spatial acuity than the conventional design; in our design, the 

virtual taxels were evenly arranged, and the average area of the virtual taxels is 12.6 cm2 (Std. = 1.4 cm2). This is 



approximately 3.15 % of the sensing area. Since the adjacent taxels overlapped each other appropriately, the robotic 

skin could achieve tactile super-resolution through tomographic imaging (Fig. S8). As a result, the single-point 

contact (deep pressure) could be localized with an error or about 4.2 mm, and the two-point discrimination threshold 

is at least 41 mm (average diameter of the virtual taxels); this level of tactile spatial acuity is better than the back or 

thigh of humans (64). 

 On the other hand, in the case of the conventional design, the virtual taxels were very large and substantially 

overlapped. In particular, the virtual taxels overlapped seriously at the central region, and their average size is 30.5 

cm2 (Std. = 27.3 cm2, Max. = 112 cm2). It means that every location of the sensor changes an output vector in a 

similar pattern, resulting in a8 compromised tactile acuity. Although it would still be possible to localize single-point 

stimuli even with conventional designs, it will be fundamentally difficult to discriminate multi-point contacts, 

especially closely located tactile stimuli. 



 

 

Fig. S1. Simulation of deformation of the multilayer structure by indentation. (A-B) Simulation setup and material 

properties for the hydrogel-elastomer hybrid and a single layer of hydrogel; (C-D) Strain energy during to the indentation. The 

resulting strain energy doubled due to the elastomeric skin; (E-F) Equivalent elastic strain due to the indentation. The simulation 

results show that the thin elastomeric skin spreads the pressure over a large area; and (G-H) Equivalent (von-mises) stress. The 

stress is concentrated on the elastomeric skin due to its relatively high modulus. 



 

 

 

 

Fig. S2. Anti-dehydration effect of multi-layer structure. (A) The elastomeric skin effectively prevents moisture loss of 

hydrogel; (B) The elastomeric skin also prevents resistance changes due to moisture loss.  

Fig. S3. Impedance of the polyacrylamide-alginate hydrogel. (A) Absolute value of the impedance; and (B) Phase of the 

impedance. The result shows that the phase decreases as the frequency of the excitation voltage increases. 

 



 

Fig. S4. Mechanical and piezoresistive characteristics of the hydrogel-elastomer hybrid. (A) Specimen for the cyclic loading 

test. The specimen was prepared with dimensions of 40 mm in width, 55 mm in length, and 10 mm in thickness. The electrodes 

had a radius of 3 mm and were spaced by 43 mm from each other; (B) Relationship between force and normalized resistance 

change; (C) Relationship between indentation depth and force; (D) Relationship between indentation depth and normalized 

resistance change; (E) Mechanical hysteresis; and (F) Piezoresistive hysteresis. The mechanical hysteresis is defined as the ratio 

between the input and loss of the work during the loading cycle. The piezoresistive hysteresis is defined as the maximum 

difference between the loading and unloading curves (resistance) divided by the maximum resistance difference during the 

loading. (G) Measured resistance during the experiment. The standard deviation of the measurement noise was 0.45 𝛺 

approximately; (H) Applied force during the experiment. The limit of detection was 0.7 N (∆𝑅 = 3𝜎). 



 

Fig. S5. Fabrication process of the biomimetic robotic skin. (A-B) The rigid base was prepared through 3D printing, casting, 

etc., and it was coated with silicone rubber (i.e., dragon skin 20, smooth-on). (C-E) The electrodes and microphones were installed 

on the rigid base, and the silicone parts were treated with 10 wt.% benzophenone-ethanol solution. (F) The pregel solution of 

tough hydrogel was then poured onto the base. (G) The pregel solution was also covered with a BP-treated elastomeric skin, and 

the glass plate was placed on the elastomeric skin tightly to prevent contact between the hydrogel and oxygen and to maintain the 

shape of the hydrogel. (H-I) The hydrogel was polymerized by exposing it to UV light (365 nm) for 1 hour, the glass plate was 

removed 1 hour after the polymerization. (J) Additional steps can be followed to modify the surface to achieve desired texture or 

color. Owing to the benzophenone absorbed in the silicone surface, the hydrogel and silicone is strongly bonded. The metal 

electrodes were also strongly bonded with hydrogel since its surface was grafted with TMSPMA. 



 

 

Fig. S6. Electrical impedance tomography based on a deep neural network to reconstruct the deformation map. (A) 

Denoising autoencoder for learning latent representation of measurement data; (B) Convolutional autoencoder for learning latent 

representation of deformation map; and (C) Projection between two latent space (from 𝑧𝑣  to 𝑧𝛿  ) for reconstructing the 

deformation map from measurement data. 

Fig. S7. Classification of dynamic tactile stimuli using a convolutional neural network. The feature image was obtained 

by concatenating the intensity histories of multichannel vibration signals and the spectrogram from the most significant 

channel. The size of the multichannel intensity history and the spectrogram are 25×41 and 64×41, so the size of the feature 

image is 89×41. The length of time window is 0.5 second. The spatiotemporal pattern of the vibration is then searched by 

convolutional neural network with ReLU activation function. Finally, the extracted features are flattened and go through the 

FCN with the SoftMax layer to classify the tactile stimuli into five classes (i.e., pat, tickle, stroke, wind, and none). 



 

 

Fig. S8. Contact localization performance. (a) Contact localization result using a DNN-based EIT reconstruction algorithm. 

The green circles indicate the location of electrodes. The black and red circles indicate the true and estimated position of contact, 

respectively. Corresponding pairs are connected to each other by a black line. The contact location is defined as a centroid 

obtained by using the deformation map as weights. The result shows that the localization error is 4.2 mm ± 2.9 mm, which is 

remarkable value considering the number of the electrodes. This suggests that tactile super-resolution has been successfully 

implemented at low electrode densities through DNN-based EIT; (b) Contact localization result using PAT algorithm. The blue 

circles indicate the location of microphones. The black and red circles indicate the true and estimated position of contact, 

respectively. Corresponding pairs are also connected to each other by a black line. The contact location is defined as the pixel 

that minimizes the loss defined in the vibration decaying model. The loss map is calculated in 200-by-200 rectangular grid. The 

result shows that localization error is 6.6 mm ± 3.8 mm. The contact localization using PAT is less accurate than the result of 

EIT, but it is still noticeable considering the placement density of the microphones.  



 

 

Fig. S9. Experiment setup for evaluating contact localization performance. (a) Motorized 3D linear stage is equipped with an 

indenter or a vibrator; (b) Indenter unit consists of load cell and hemispherical tip with a diameter of 15 mm. This unit is used to 

evaluate EIT-based contact localization performance; and (c) Vibrator unit consists of a voice coil motor, a spring, and a rubber 

tip. This unit is used to evaluate PAT-based contact localization performance. 

 



 

 

Fig. S10. Measurement device for multi-modal tactile sensing based on tomographic imaging. (a) Scheme of field-

programmable gate array (FPGA)-based measurement system for electrical impedance tomography and passive acoustic 

tomography. The FPGA is used for both of electrode switching and data acquisition. The measured data are filtered inside the 

FPGA and sent to the host through the buffer (DMA FIFO). The typical idle power consumption is only 2.6 W, and the sensor 

itself consumes only 6 mW approximately; (b) DAQ stacked with the boards; (c) EIT board with multiplexors; and (d) PAT board 

with analog filters and multiplexors. 

 



 

 

 

Fig. S11. Comparison of sensor characteristics between EIT-based tactile sensors with different electrode arrangements. 

(A) Examples of mesh models with conductivity perturbation (left: proposed design, right: conventional design). For simulation, 

the mesh elements corresponding to the indented portion were set to have a zero-conductivity value; (B) Sensitivity map obtained 

from transfer impedance matrices (left: proposed design, right: conventional design). The conventional design has an insensitive 

region at the central region; (C) Histogram of sensitivity distribution (black: proposed design, red: conventional design). The area 

of the insensitive region is about 33 % of the total area; (D) Examples of similarity surfaces obtained from proposed design (left 

three images) and conventional design (right three images); (E) Virtual taxels obtained from each mesh model (left: proposed 

design, right: conventional design). The conventional design has severely overlapping virtual taxels in the central region, implying 

its inferior spatial acuity; (F) Histogram of the size of the virtual taxels.  



 

Fig. S12. Influence of sensor thickness on tactile sensing characteristics. (a) Sensitivity distribution by sensor thickness. 

(b) Size of virtual taxels by sensor thickness 



 

 

 

 

 

Fig. S13. Changes in piezoresistive properties due to damage and repair. (A) Specimen for the experiment (pristine, 

damaged, widened, and repaired). This specimen is identical to the specimen used for the cyclic loading test (Fig. S4). The 

specimen was cut with a surgical knife and repaired by applying chitosan topohesive and silicone adhesive; (B) Relationship 

between force and normalized resistance change. The electrical connection was perfectly restored and not changed even under 

the external force. The loading/unloading curve is slightly changed after damage and repair, but the trend of the curve was 

almost the same as before the damage; (C) Relationship between indentation depth and force; (D) Relationship between 

indentation depth and normalized resistance change; (E) Mechanical hysteresis; and (F) Piezoresistive hysteresis by loading 

frequency show that the specimens have more hysteretic characteristics after damage and repair. 

 



 

 

 

 

 

 

Fig. S14. Additive fabrication of hydrogel on a hydrogel-coated elastomer (A) Inner side of the elastomeric skin; (B) Inner side 

of the elastomeric skin coated with PAAm hydrogel; (C) Additive fabrication of hydrogel on a hydrogel-coated surface. The bulk 

hydrogel is polymerized by thermo-initiator; (d) The bonding between the elastomeric skin and the hydrogel was maintained even 

under deformation such as lifted skin fold (pinch). 

 

Fig. S15. Receptive field of microphone encased with silicone capsule (A) Large and omnidirectional receptive field due to 

silicone capsule; (B) Small receptive field due to the lack of silicone capsule; (C) Relationship between the vibration propagation 

distance and the SNR of the measured vibration 
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