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When a confined elastic layer is under tension, undulations can occur at its exposed surfaces, giving the 

fingering or fringe instability. These instabilities are of great concern in the design of robust adhesives, 

since they not only initiate severe local deformations in adhesive layers but also cause non-monotonic 

overall stress vs. stretch relations of the layers. Here, we show that the strain stiffening of soft elastic 

materials can significantly delay and even suppress the fringe and fingering instabilities, and give mono- 

tonic stress vs. stretch relations. Instability development requires local large deformation, which can be 

inhibited by material-stiffening. We provide a quantitative phase diagram to summarize the stiffening’s 

effects on the instabilities and stress vs. stretch relations in confined elastic layers. We further use nu- 

merical simulations and experiments to validate our findings. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Confined elastic layers are ubiquitous in nature such as mussel

lagues, tendons and ligaments ( Benjamin et al., 2006; Desmond

t al., 2015; Waite et al., 2005 ) and widely adopted in engineering

pplications such as insulators, sealants, artificial joints, and versa-

ile adhesives ( Biggins et al., 2013; Creton and Ciccotti, 2016; Liu

t al., 2017; Shull, 2002; Yuk et al., 2017 ). When a confined elastic

ayer is under tension, fringe instability ( Lin et al., 2016 ) or finger-

ng instability ( Biggins et al., 2013; Shull et al., 20 0 0 ) can form at

ts exposed surfaces, leading to various modes of failures including

nterfacial detachment and cohesive fracture in relevant structures

 Chaudhury et al., 2015; Crosby et al., 20 0 0; Zhao et al., 20 06 ). The

pproaches to suppress these instabilities are of great importance

o the design of robust adhesives ( Yuk et al., 2016a ), which never-

heless have not been explored so far. 

Here, we show that both fringe instability and fingering insta-

ility can be suppressed if the confined layer stiffens significantly

t moderate stretches. We adopt a Gent solid ( Gent, 1996 ) with

hear modulus μ and limit of the strain invariant J m 

to model the

echanical behavior of stiffening layers under tension. From com-

ined experiments and simulation, we identify two critical val-

es for J m 

of a material: J mono below which the tensile stress vs.

tretch relation of a confined layer is monotonic, although either

ringe or fingering instability may set in the layer; and J inst be-
∗ Corresponding author at: Department of Mechanical Engineering, Massachusetts 
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ow which both fringe instability and fingering instability are fully

uppressed. To further experimentally validate the suppression of

oth fringe and fingering instabilities in a stiffening layer, we per-

orm a set of controlled experiments by applying tensile load on

n Ecoflex layer and a hydrogel layer, representing stiffening ma-

erial and non-stiffening material respectively. The understanding

n suppression of elastic instabilities in a confined strain stiffening

ayer can serve as a guideline for the design of robust adhesives for

ngineering applications ( Yuk et al., 2016a,b ). Moreover, it may also

lucidate one possible reason why stiffening layers such as carti-

age, ligament and mussel thread ( Sharma et al., 2016; Silverman

nd Roberto, 2007 ) are adopted in nature. 

. Formulation of the problem 

As illustrated in Fig. 1 , we focus on an elastic layer of cylindri-

al shape with height H and diameter D at the undeformed state.

 tensile force F is applied on the layer to elongate the layer to

he current height h . The applied nominal stress S and the applied

tretch λ is defined as: 

 = 

4 F 

πD 

2 
, λ = 

h 

H 

. (1) 

Geometrically, the cylindrical elastic layer in the undeformed

tate occupies a region 0 ≤ R ≤ D /2, 0 ≤ � < 2 π , and − H /2

Z ≤ H /2. The corresponding dimensionless parameters are de-

ned as R̄ = 

R 
D/ 2 and Z̄ = 

Z 
H/ 2 with R̄ ∈ [ 0 , 1 ] and Z̄ ∈ [ −1 , 1 ] . The

eformation gradient of the elastic layer reads as F = 1 + ∇u with

 ( R, �, Z ) = u R e R + u �e � + u Z e Z being the displacement vector of

 point initially at ( R , �, Z ), where u , u and u are radial
R � Z 
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Fig. 1. (a) Schematic of the formation of fingering instabilities in elastic layers with diameter of D and thickness of H . Fingering instability initiates at the middle-plane of 

the elastic layer. (b) Schematic of the formation of fringe instabilities in elastic layers with diameter of D and thickness of H . Fringe instability initiates at the plane close to 

the fringe portion of the elastic layer. The aspect ratio of the layer is defined as α = D / H . 
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displacement, hoop displacement, and axial displacement, respec-

tively. The elastic layer is taken as a Gent solid ( Gent, 1996 ), with

the free energy reading as: 

ψ = −μJ m 

2 

ln 

(
1 − J 1 

J m 

)
+ κ ln J, (2)

where μ is the shear modulus, κ is the bulk modulus, J = det (F ) ,

the strain invariant J 1 = tr ( ̄F ̄F T ) − 3 with F̄ = J −1 / 3 F and J m 

is the

material constant which identifies the limiting value of J 1 . We

set the elastocapillary length of the layer to be much smaller

than the macroscopic dimensions of the sample (i.e. D and H ),

therefore having negligible effects on the emergence of elastic

instabilities. Moreover, we set κ/μ as large as 20 0 0, thus the

slight incompressibility does not have observable effect on emer-

gence of elastic instabilities. The parameters affecting the mechan-

ical behavior of the elastic layer are: layer’s aspect ratio α = D / H

and material constants μ and J m 

. The material particles in the

layer satisfy the stress equilibrium by Div S = 0 , with the nominal

stress tensor S = 

μJ m 
J m −J [ J −2 / 3 F − 1 

3 tr ( ̄F ̄F 
T ) F −T ] + κ ln (J) F −T and F̄ =
1 

Please cite this article as: S. Lin et al., Material-stiffening suppresses 
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−1 / 3 F . The displacement boundary conditions are: u R ( ̄Z = ±1 ) = 0 ,

 �( ̄Z = ±1 ) = 0 , u Z ( ̄Z = 0 ) = 0 and u Z ( ̄Z = 1 ) is the imposed dis-

lacement on the top surface of the layer. 

We use the commercial finite element software Abaqus/Explicit

y writing a VUMAT subroutine to simulate the deformation of

lastic layer and capture the onset of instabilities. The ratio be-

ween bulk modulus κ and shear modulus μ is set as κ/μ = 20 0 0

or all cases in this paper, to approximate the incompressibility of

he layer. The type of the element is taken as C3D8 and the mesh

ize is taken as ∼ 1/10 of the smallest feature dimension. 

When the elastic layer is under tension, the exposed surface

f the layer initially deforms into a parabolic shape. When the

pplied stretch reaches a critical value λc (or the applied nom-

nal stress reaches S c ), undulations emerge at the exposed sur-

aces of the layer, giving fringe instability or fingering instability

 Biggins et al., 2013; Lin et al., 2017 ). We take the vertical location

hat gives the highest undulation amplitude Z̄ = Z̄ 0 as the location

here the undulations initiate in simulation. 
elastic fingering and fringe instabilities, International Journal of 
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Fig. 2. (a) Illustration of the amplitude of undulations at various vertical locations. (b) The normalized amplitude A m / D versus vertical location Z̄ at the onset of fingering 

instability in the layers with large aspect ratio (i.e. α = 14) for both non-stiffening layers (i.e. J m → ∞ ) and stiffening layers with various limits of strain invariant J m . The 

vertical location with maximum amplitude identifies the vertical plane where undulations initiate (i.e. Z̄ 0 = 0 ), at middle-plane of the layer. (c) The normalized amplitude 

A m / D versus vertical location Z̄ at the onset of fringe instability in the layers with small aspect ratio (i.e. α = 2) for both non-stiffening layers (i.e. J m → ∞ ) and stiffening 

layers with various limits of strain invariant J m . The vertical location with maximum amplitude identifies the vertical plane where undulations initiate (i.e. Z̄ 0 = 0 . 8 ), close 

to fringe portion. (d) The vertical plane where undulations initiate for the layers with various aspect ratios and various limits of strain invariant. For the samples with large 

aspect ratio α in which fingering instability sets in, the instability initiates at the middle section of the exposed meniscus (i.e. Z̄ 0 = 0 ); while for the samples with small 

aspect ratio α, the instability initiates at the fringe portion of the exposed meniscus (i.e. Z̄ 0 	 = 0 ), giving fringe instability. 

Fig. 3. Theoretical and simulation results on the critical points of fingering instability and fringe instability. (a) Comparison of the critical stretch λc for the onset of 

instabilities between theory and simulation. (b) Comparison of the critical mode number ω c between theory and simulation. Solid line denotes the theoretical results for 

non-stiffening layers (i.e. J m → ∞ ). Solid circular dots denote simulations results for non-stiffening layers (i.e. J m → ∞ ). Hollow square dots, circular dots and triangular dots 

denote simulation results for stiffening layers with J m = 24, J m = 45 and J m = 72. 

Please cite this article as: S. Lin et al., Material-stiffening suppresses elastic fingering and fringe instabilities, International Journal of 
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Fig. 4. Suppression of fingering instability in the sample with aspect ratio of α = 6. (a) Fingering instability emerges in a neo-Hookean layer. (b) Fingering instability sup- 

pressed in a Gent solid with the limit of the strain invariant J m = 1.3. (c) The radius of the outer surface at the middle plane of the layer where undulations initiate and (d) 

the maximum strain invariant ( J 1 ) max at the plane where instability initiates. Dots represent the onset of fingering instabilities. 
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3. Effects of material stiffening on fingering and fringe 

instabilities 

In previous study on non-stiffening materials (i.e. J m 

→ ∞ ), we

find the aspect ratio α = D / H determines the selection of the mode

of instability ( Lin et al., 2017 ). As shown in Fig. 1 , for the sam-

ples with large aspect ratio α in which fingering instability sets in,

the instability initiates at the middle section of the exposed menis-

cus (i.e. Z̄ 0 = 0 ); while for the samples with small aspect ratio α,

the instability initiates at the fringe portion of the exposed menis-

cus (i.e. Z̄ 0 	 = 0 ), giving fringe instability. The critical aspect ratio

between fringe instability and fingering instability has been iden-

tified as αfringe − fingering = 5 for non-stiffening materials ( Lin et al.,

2017 ). Here, we further investigate the effect of material-stiffening

on αfringe − fingering by performing a set of numerical simulations for

the samples with various aspect ratios α ranging from 1 to 10

and various limits of the strain invariant (i.e. J m 

= 24, J m 

= 45 and

J m 

= 72). We extract the contour of exposed surface at each verti-

cal location of the layer at the onset of instabilities as shown in
Please cite this article as: S. Lin et al., Material-stiffening suppresses 

Solids and Structures (2018), https://doi.org/10.1016/j.ijsolstr.2018.01.022
ig. 2 a. The difference between the maximum radius r max and the

inimum radius r min defines the amplitude of the contour A m 

. We

urther plot the normalized amplitude A m 

/ D versus vertical loca-

ion Z̄ in the layer. As shown in Fig. 2 b, for the layers with large

spect ratio (i.e. α = 14) in which fingering instability sets in, the

ertical location that gives the maximum amplitude is at the mid-

le plane (i.e. Z̄ 0 = 0 ) for the layers in both non-stiffening layers

nd stiffening layers with J m 

= 24, J m 

= 45 and J m 

= 72. As shown in

ig. 2 c, for the layers with small aspect ratio (i.e. α = 2) in which

ringe instability sets in, the vertical location that gives the max-

mum amplitude is at the plane Z̄ 0 = 0 . 8 for the layers in both

on-stiffening layers and stiffening layers with J m 

= 24, J m 

= 45 and

 m 

= 72. We summarize the vertical location that gives the maxi-

um amplitude at the onset of instabilities in both stiffening lay-

rs and non-stiffening layers. As shown in Fig. 2 d, the limit of the

train invariant J m 

does not affect the critical aspect ratio between

ringe instability and fingering instability significantly, which is the

ame as that in a non-stiffening layer (i.e. αfringe − fingering = 5). 
elastic fingering and fringe instabilities, International Journal of 
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Fig. 5. Suppression of fringe instability in the sample with aspect ratio of α = 1. (a) Fringe instability emerges in a neo-Hookean layer. (b) Fringe instability suppressed in a 

Gent solid with the limit of the strain invariant J m = 9. (c) The radius of the outer surface at the plane Z̄ 0 = 0 . 9 where undulations initiate and (d) the maximum first strain 

invariant ( J 1 ) max . Dots represent the onset of fringe instabilities. 
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We further explore the effect of material-stiffening on the onset

f instabilities in elastic layers. In previous study on non-stiffening

aterials (i.e. J m 

→ ∞ ), we derive the analytical solution of the de-

ormation field and predict the critical stretch λc and the critical

umber of undulations ω c for the onset of instabilities in elas-

ic layers. We summarize the theoretical analysis for the onset of

nstabilities in non-stiffening materials in Appendix . With the in-

rease of the layer’s aspect ratio α, the critical stretch λc decreases

hile the critical number of undulations ω c increases. We first

erform a set of simulations for the layers with moderate J m 

(i.e.

 m 

= 24, J m 

= 45 and J m 

= 72). As shown in Fig. 3 , material-stiffening

as negligible effect on the critical stretch λc and slightly increases

he critical number of undulations ω c . 

Next, we study the effect of material stiffening on the sup-

ression of both fingering and fringe instabilities. We first study
Please cite this article as: S. Lin et al., Material-stiffening suppresses 

Solids and Structures (2018), https://doi.org/10.1016/j.ijsolstr.2018.01.022
ngering instability (in the samples with α = 6) for both stiffen-

ng and non-stiffening materials. As shown in Fig. 4 a and c, for

 non-stiffening layer (i.e. J m 

→ ∞ ), as the applied stretch reaches

c = 1.62, the radius of the external surface r at the middle plane

here undulations initiate (i.e. Z̄ 0 = 0 ) bifurcates, giving the fin-

ering instability. Right after the onset of fingering instability, the

aximum strain invariant ( J 1 ) max at the plane where instability

nitiates (i.e. Z̄ 0 = 0 ) increases dramatically, corresponding to the

rst-order transition of fingering instability ( Biggins et al., 2013 )

see Fig. 4 d). In contrast, for a stiffening layer with moderate J m 

e.g. J m 

= 15.8), the bifurcation of the radius at the middle plane is

artially suppressed, manifested by the decreasing undulation am-

litude r max − r min (see Fig. 4 c). In addition, the maximum first

train invariant ( J 1 ) max in the layer increases less steeply than that

f the non-stiffening layer. For an elastic layer which stiffens at
elastic fingering and fringe instabilities, International Journal of 
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Fig. 6. The maximum strain invariant ( J 1 ) max at the plane where instability initiates 

with various limit of first strain invariant J m and aspect ratio of α = 2, α = 6 and 

α = 14 at the onset of instabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. A phase diagram elucidating the suppression of fringe or fingering insta- 

bilities and the stress vs. stretch relation in confined elastic layers with respect to 

layer’s aspect ratio α and limit of the strain invariant J m . 
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early stretches (e.g. J m 

= 1.3), fingering instability can be fully sup-

pressed and no bifurcation can be observed even when the maxi-

mum first strain invariant within the layer ( J 1 ) max approaches the

limit of J m 

(see Fig. 4 b, c and d). We next study fringe instability

(in the samples with α = 1) for both stiffening and non-stiffening

materials. As illustrated in Fig. 5 a, fringe instability emerges in a

non-stiffening layer when the applied stretch reaches λc = 4, corre-

sponding to the bifurcation of the radius of the outer surface ini-

tiating at the plane of Z̄ 0 = 0 . 9 (see Fig. 5 a). While for the stiffen-

ing layer with J m 

= 9, no bifurcation occurs at the exposed surface

even when the maximum first strain invariant ( J 1 ) max at the plane

where instability initiates (i.e. Z̄ 0 = 0 . 9 ) increases up to the limit of

J m 

(see Fig. 5 b, c and d). 

As shown in Figs. 4 and 5 , both fingering instability and fringe

instability can be suppressed in elastic layers with early stiffen-

ing. To identify the critical limit of the first strain invariant J inst be-

low which fingering instability (or fringe instability) can be fully

suppressed, we perform a set of simulations with decreasing J m 

and varying α. As shown in Fig. 6 , the maximum strain invariant

( J 1 ) max of the layer at the plane where instability initiates is nearly

constant for the layer with moderate J m 

, while slightly increases

and approaches the limit of the strain invariant J m 

(the dashed line

in Fig. 6 ) when J m 

decreases. When J m 

further decreases to a criti-
Fig. 7. The stress-stretch curves for the sample with (a) aspect ratio of α =

Please cite this article as: S. Lin et al., Material-stiffening suppresses 

Solids and Structures (2018), https://doi.org/10.1016/j.ijsolstr.2018.01.022
al limit of the strain invariant J inst (see the marked cross points in

ig. 6 ), instabilities are fully suppressed. It is also shown that the

ritical limit of the strain invariant J inst decreases with the increase

f the layer’s aspect ratio α. 

. Effects of material stiffening on stress vs. stretch relation 

The applied nominal stress-stretch curve of a confined elastic

ayer under tension has been of great interests in the design of ro-

ust adhesives. It has been reported that, for a non-stiffening layer,

he stress-stretch curve is monotonic for fringe instability in the

amples with small aspect ratios (i.e. α < 5); non-monotonic for

ngering instabilities in the samples with large aspect ratios (i.e.

> 5) ( Lin et al., 2017 ). The non-monotonic stress-stretch relation

n general is not preferred in adhesives, since it can cause catas-

rophic failures of the adhesives under increasing tensile stress.

n this section, we will show that material-stiffening can change

tress vs. stretch relation from non-monotonic to monotonic. 

As shown in Fig. 7 a and b, both layers with aspect ratio of α = 6

nd α = 10 show non-monotonic stress vs. stretch relation for non-

tiffening layer (i.e. J m 

→ ∞ ) and the onset of fingering instabil-

ty corresponds to the maximum applied stress. With the decrease

f J m 

, the normalized nominal stress S /μ increases and the stress
 6 and (b) α = 10. Dots represent the onset of fingering instabilities. 

elastic fingering and fringe instabilities, International Journal of 
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Fig. 9. Experimental validation of the suppression of fingering and fringe instability in a stiffening layer. (a) The evolution of the deformation in a hydrogel layer and rubber 

layer with aspect ratio of α = 2 and (b) corresponding applied stress-stretch curves. (c) The evolution of the deformation in hydrogel layer and rubber layer with aspect ratio 

of α = 6 and (d) corresponding applied stress-stretch curves. Dots represent the onset of the instabilities. 
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b  
s. stretch relation transits from non-monotonic to monotonic in

oth layers. For the layer which stiffens at moderate stretches

e.g. J m 

= 24 and J m 

= 45 for α = 6, J m 

= 24 and J m 

= 72 for α = 10),

he onset of fingering instability is corresponding to a kink of

he stress-stretch curve while the stress keeps increasing. For the

ayers with early stiffening (e.g J m 

= 12.9 for α = 6, J m 

= 11.5 for

= 10), instabilities are shown to be fully suppressed and stress

onotonically increases with the applied stretch. The transition of

he stress vs. stretch relations from non-monotonic to monotonic

ives the other critical limit of the strain invariant J mono , below

hich the tensile stress vs. stretch relation of a confined layer is

onotonic. As shown in Fig. 8 , we summarize J mono for the layers

ith the aspect ratio from 5 to 20. 

. Phase diagram for the suppression of instabilities in 

onfined layers 

In Section 3 , we first identify the critical aspect ratio between

ringe instability and fingering instability αfringe − fingering and we

urther show the critical limit of first strain invariant J inst below

hich both fringe instability and fingering instability are fully sup-

ressed. In Section 4 , we identify the other critical limit of first
Please cite this article as: S. Lin et al., Material-stiffening suppresses 

Solids and Structures (2018), https://doi.org/10.1016/j.ijsolstr.2018.01.022
train invariant J mono , below which the tensile stress vs. stretch re-

ation of a confined layer is monotonic. In this section, we summa-

ize the results in previous sections and further construct a phase

iagram in the plot of aspect ratio α and limit of the strain in-

ariant J m 

, elucidating the effect of material-stiffening on selection

f modes and suppression of both fringe and fingering instabilities.

s shown in Fig. 8 , for a layer with early stiffening (i.e. J m 

< J inst ),

here is no fringe instability or fingering instability setting in. For

 layer with moderate stiffening (i.e. J inst < J m 

< J mono ), undula-

ions can initiate at the exposed surface of the layer and the ap-

lied stress monotonically increases with the applied stretch. For a

ayer which shows negligible stiffening (i.e. J m 

> J mono ), the stress

s. stretch relation applied on the layer is non-monotonic and the

nset of the instability (i.e. fingering instability) is correlated with

he point of maximum stress. The phase diagram can serve as a

uideline on selection of the mode of instability and monotonicity

f stress vs. stretch relation. 

. Experimental validations 

To validate the suppression of both fringe and fingering insta-

ilities in experiment, we chose Ecoflex rubber and Polyacrylamide
elastic fingering and fringe instabilities, International Journal of 
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hydrogel as the representative stiffening solid and non-stiffening

solid, respectively. The Ecoflec rubber is fabricated by mixing the

Ecoflex 00–30 (Smooth on) with the ratio of 1:1. The polyacry-

lamide hydrogel consists of 12 wt% acrylamide (AAm), 2 wt% al-

ginate and 500 μL 0.23 wt% N,N’-Methylenebisacrylamide in 10 ml

total solution. The detailed fabrication method is described in our

previous papers ( Lin et al., 2017 ). To measure the shear modulus

μ and limit of the strain invariant J m 

, we make dog-bone samples,

performing uniaxial tensile tests. The measured shear modulus μ

is 15 kPa and 1.1 kPa for Ecoflex rubber and polyacrylamide hydro-

gel, respectively. The limit of the strain invariant J m 

for Ecoflex

rubber and polyacrylamide hydrogel are measured to be 30 and

270, respectively. Recalling the phase diagram in Fig. 8 , the limit

of the strain invariant for Ecoflex is much lower than J mono (i.e.

J mono = 100 for α = 6) but slightly higher than J inst (i.e. J inst = 18.9

for α = 2 and J inst = 11.5 for α = 6); while that for hydrogel is

much larger than both J mono (i.e. J mono = 100 for α = 6) and J inst (i.e.

J inst = 18.9 for α = 2 and J inst = 11.5 for α = 6). 

As shown in Fig. 9 a, for the samples with aspect ratio of α = 2,

fringe instability forms at the critical stretch of λc = 3.9 and the

critical stress of S c = 3.8 in hydrogel sample as reported in our pre-

vious work ( Lin et al., 2016 ). While for the rubber sample with the

identical dimensions, it deforms with uniform shrinkage and the

applied normalized nominal stress S /μ increase dramatically (see

Fig. 9 b). There are negligible fringe undulations even when the ap-

plied stretch approaches the limiting locking stretch. We further

perform a pair of controlled experiments for the samples with as-

pect ratio of α = 6 (see Fig. 9 c). Fingering instability forms at the

exposed surface of the hydrogel sample while the exposed surface

of the rubber sample remains uniform circular shape with negligi-

ble undulations. The normalized nominal stress S /μ in Ecoflex rub-

ber is much larger than that in hydrogel sample, which manifests

the effect from material-stiffening as well (see Fig. 9 d). 

7. Concluding remarks 

In this paper, we explore the effect of material-stiffening on the

onset of both fringe and fingering instabilities and stress vs. stretch

relations. We show that for a layer with early stiffening, the lo-

cal large deformation for instability development can be highly in-

hibited and both fringe and fingering instabilities can be delayed

and even fully suppressed. In addition, we show the transition of

stress vs. stretch relation from non-monotonic to monotonic with

decreasing J m 

. Most tough biological tissues indeed show stress-

stretch curves with J -shape owning to the hierarchical integration

of the strong coil-shape collagen and the surrounding soft matrices

( Lin et al., 2014b; Motte and Kaufman, 2013 ). The systematic un-

derstanding of the material-stiffening on the effect of elastic insta-

bilities in confined elastic layers may reveal the underlying tough-

ening mechanisms, which the biological tissues (e.g. cartilage, lig-

ament and mussel thread) adopt in nature to avoid these instabil-

ities for long-term functionality. Moreover, the findings in this pa-

per can evoke the need to design hydrogel-based composite struc-

tures ( Huang et al., 2017; Lin et al., 2014a; Tummala et al., 2017 ),

which can mimic the nature’s strategy and as a result exhibit ultra-

robust performances. 
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ppendix A. Theoretical analysis for the onset of fingering and 

ringe instability in non-stiffening layers 

In previous paper, we derive the theoretical analysis for de-

ormation field and perform linear perturbation for the onset of

ngering and fringe instability in non-stiffening layers ( Lin et al.,

017 ). We make a single assumption that any horizontal plane at

he un-deformed state remains planar upon deformation. The dis-

lacement field in the cylindrical elastic layer can be specified as

 R ( ̄R , ̄Z ) = R̄ u 1 ( ̄Z ) and u Z ( ̄Z ) = u 2 ( ̄Z ) . The deformation gradient in

he layer can be expressed as: 

 = 

[ 

λrR 0 γrZ 

0 λθ� 0 

0 0 λzZ 

] 

, (A1)

ith λrR = λθ� = 1 + 

1 
D/ 2 u 1 , λzZ = 1 + 

1 
H/ 2 u 

′ 
2 

and γrZ = 

1 
H/ 2 R̄ u 

′ 
1 
. For

 non-stiffening material with the strain energy density func-

ion ψ = 

μ
2 [ tr ( F 

T F ) − 3 ] , the nominal stress tensor S is expressed

hrough S = μF − p ∗F − T , where p ∗ is the Lagrange multiplier to en-

orce the incompressibility and p̄ = p ∗/μ is the corresponding di-

ensionless form. By enforcing the equilibrium equation Div S = 0

ith boundary conditions that d u 1 / d ̄Z | Z̄ =0 = 0 , u 1 ( ̄Z = ±1) = 0 ,

 2 ( ̄Z = 0) = 0 and traction free at the middle plane, the deforma-

ion field and Lagrange multiplier in the elastic layer can be ana-

ytically solved as: 

 1 ( ̄Z ) = 

D 

2 

[
cosh (κ Z̄ ) 

cosh (κ) 
− 1 

]
, (A2a)

 2 ( ̄Z ) = 

H 

2 

[
sinh (2 κ) 

2 κ

tanh (κ Z̄ ) 

tanh (κ) 
− Z̄ 

]
, (A2b)

p̄ = 

1 

2 

( 

cosh 

4 κ

cosh 

4 
(
κ Z̄ 

) − cosh 

4 κ

) 

+ 

κ2 α2 

2 

( 

R̄ 

2 
cosh 

2 
(
κ Z̄ 

)
cosh 

2 κ
− 1 

cosh 

2 κ

) 

+ 

1 

cosh 

2 κ
. (A2c)

here κ is an internal loading parameter which is correlated with

he applied stretch through 

= 

sinh (2 κ) 

2 κ
. (A3)

We further perform perturbation on both deformation field and

agrange multiplier with first order perturbation as x = (x ) 0 + ε ̃  x

nd p̄ = ( ̄p ) 0 + ε ̃  p , where ε is a dimensionless small parameter,

 x ) 0 = u R e R + u z e Z and ( ̄p ) 0 = p̄ are the un-perturbed solutions in

q. (A2), ˜ x and ˜ p are perturbed fields following the forms: 

˜  = A 1 (R ) u 1 (Z) cos ( ω�) e R + A 2 (R ) u 1 (Z) sin ( ω�) e �

+ A 3 (R ) u 2 (Z) sin ( ω�) e Z , (A4)

˜ p = A 4 (Z, R ) cos (ω�) , (A5)

here A i ( i = 1, 2, 3, 4) are the amplitudes of perturbation. There-

ore, the perturbed deformation gradient may write as F = (F ) 0 +
 Grad ̃  x , where ( F ) 0 is the un-perturbed deformation gradient at

ase state expressed in Eq. (A2). By inserting the perturbed dis-

lacement field, the deformation gradient reads as: 

 = 

⎡ 

⎢ ⎣ 

λrR + ε A ′ 1 u 1 cos (ω�) −ε A 1 ω+ A 2 
R 

u 1 sin (ω�) γrZ + ε A 1 u 
′ 
1 cos (ω�) 

ε A ′ 2 u 1 sin (ω�) λθ� + ε A 2 ω+ A 1 
R 

u 1 cos (ω�) ε A 2 u ′ 1 sin (ω�) 

ε A ′ 3 u 2 cos (ω�) −ε A 3 ω 
R 

u 2 sin (ω�) λzZ + ε A 3 u ′ 2 cos (ω�) 

⎤ 

⎥ ⎦ 

. 

(A6)
elastic fingering and fringe instabilities, International Journal of 
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The incompressibility of the elastic layer is enforced by det F =
 , which implies: 

zZ A 

′ 
1 u 1 + λzZ 

A 2 ω + A 1 

R 

u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 = 0 . (A7)

The perturbation in deformation gradient will further induce a

erturbation in nominal stress which results in the nominal stress

eading as S /μ = (S ) 0 /μ + ε ̃ S . Here, ˜ S is the perturbed normal-

zed nominal stress writing as ˜ S = Grad ̃  x + 

1 
ε [ ( ̄p ) 

0 (F ) 0 −T − p̄ F −T ] .

 balance of the forces exerted on an element of the perturbed

lastomer further leads to three equations of equilibrium through

iv ̃  S = 0 . The four unknown A i ( i = 1, 2, 3, 4) can be fully spec-

fied by these three equations and the incompressibility condition

n Eq. (A7) with boundary conditions that the traction t R = S · e R 
hall be zero at R̄ = 1 . The four equations can be simplified by

liminating A 2 and A 4 . Furthermore, we notice that fingering insta-

ility is an instability mode with A 3 = 0 and fringe instability with

he layer’s aspect ratio slightly smaller than the transition aspect

atio αfringe − fingering between fingering instability and fringe insta-

ility is an instability mode with A 3 �A 1 and A 3 �A 2 . Therefore, the

nly governing ODE to be solved is with respect to the amplitude

long radius direction A 1 in the dimensionless form, reading: 

R̄ 

4 A 

(4) 
1 

+ 6 ̄R 

3 A 

(3) 
1 

+ ( 5 − 2 ω 

2 ) ̄R 

2 A 

′′ 
1 − ( 2 ω 

2 + 1 ) ̄R A 

′ 
1 

+ ( ω 

2 − 1 ) 2 A 1 − A 

2 
h R̄ 

2 [ ̄R 

2 A 

′′ 
1 + 3 ̄R A 

′ 
1 − ( ω 

2 − 1 ) A 1 ] = 0 , (A8) 

ith A h = 

√ 

κ2 α2 

1 −λrR 
. By setting the boundary conditions of traction

ree at R̄ = 1 , namely ˜ S rR = 0 , ˜ S θR = 0 and 

˜ S zR = 0 , the two bound-

ry conditions in the dimensionless form read as: 

A 

(3) 
1 

(1) + 4 A 

′′ 
1 (1) + [ 1 − 2 ω 

2 − ζω 

2 − A 

2 
h ] A 

′ 
1 (1) 

+[ ω 

2 − 1 + ω 

2 κ2 α2 − A 

2 
h ] A 1 (1) = 0 , (A9a) 

 

′′ 
1 (1) + ( 2 − ζ ) A 

′ 
1 (1) + ζ

(
ω 

2 − 1 

)
A 1 (1) = 0 , (A9b)

ith 

( ̄Z 0 ) = 

1 

2 

κ2 α2 + 

1 

2 

λ−6 
rR + C 3 λ

−2 
rR , (A9c)

 3 = 

1 

cos 2 κ

[ 
1 − 1 

2 

κ2 α2 
] 

− 1 

2 

cos 4 κ. (A9d) 

The existence of the non-trivial solution for Eq. (A8) with two

oundary conditions in Eq. (A9) depends on whether the following

quation has solution or not: (
l 2 ω 

3 A h + lA 

3 
h − l 2 ω A h 

) I ω−1 ( A h ) 

I ω ( A h ) 

−
(
2 l ω 

2 A 

2 
h + 2 l 2 ω 

4 − 2 l 2 ω 

2 + A 

4 
h 

)
+ 

(
2 l ω 

2 + ωA 

2 
h − lω A h 

I ω−1 ( A h ) 

I ω ( A h ) 

)
κ2 α2 = 0 (A10) 

here l = 1 + ζ . 
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By minimizing κ through ω at each plane, we can have the crit-

cal stretch λc , the critical number of undulations ω c and the ver-

ical location of the plane where the undulations initiate Z 0 . As

hown in Fig. 3 , the theoretical results for the critical stretch λc 

nd the critical number of undulations ω c are compared with sim-

lation results, showing good agreement. 
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